A goodness-of-fit test for the functional linear model with scalar response

Abstract

In this work, a goodness-of-fit test for the null hypothesis of a functional linear model with scalar response is proposed. The test is based on a generalization to the functional framework of a previous one, designed for the goodness-of-fit of regression models with multivariate covariates using random projections. The test statistic is easy to compute using geometrical and matrix arguments, and simple to calibrate in its distribution by a wild bootstrap on the residuals. The finite sample properties of the test are illustrated by a simulation study for several types of basis and under different alternatives. Finally, the test is applied to two datasets for checking the assumption of the functional linear model and a graphical tool is introduced. Supplementary materials are available online.

Publication
Journal of Computational and Graphical Statistics
Eduardo García-Portugués
Eduardo García-Portugués
Group Head
Associate Professor