A family of toroidal diffusions with exact likelihood inference

Abstract

We provide a class of diffusion processes for continuous time-varying multivariate angular data with explicit transition probability densities, enabling exact likelihood inference. The presented diffusions are time-reversible and can be constructed for any pre-specified stationary distribution on the torus, including highly-multimodal mixtures. We give results on asymptotic likelihood theory allowing one-sample inference and tests of linear hypotheses for $k$ groups of diffusions, including homogeneity. We show that exact and direct diffusion bridge simulation is possible too. A class of circular jump processes with similar properties is also proposed. Several numerical experiments illustrate the methodology for the circular and two-dimensional torus cases. The new family of diffusions is applied (i) to test several homogeneity hypotheses on the movement of ants and (ii) to simulate bridges between the three-dimensional backbones of two related proteins.

Publication
arXiv preprint arXiv:2409.02705
Eduardo García-Portugués
Eduardo García-Portugués
Group Head
Associate Professor