A multivariate generalized autoregressive conditional heteroscedasticity model with dynamic conditional correlations is proposed, in which the individual conditional volatilities follow exponential generalized autoregressive conditional heteroscedasticity models and the standardized innovations follow a mixture of Gaussian distributions. Inference on the model parameters and prediction of future volatilities are addressed by both maximum likelihood and Bayesian estimation methods. Estimation of the Value at Risk of a given portfolio and selection of optimal portfolios under the proposed specification are addressed. The good performance of the proposed methodology is illustrated via Monte Carlo experiments and the analysis of the daily closing prices of the Dow Jones and NASDAQ indexes.